ACE: A Model Poisoning Attack on Contribution Evaluation Method in Federated Learning

USENIX Security 2024

Zhangchen Xu¹, Fengqing Jiang¹, Luyao Niu¹, Jinyuan Jia², Bo Li³ and Radha Poovendran¹

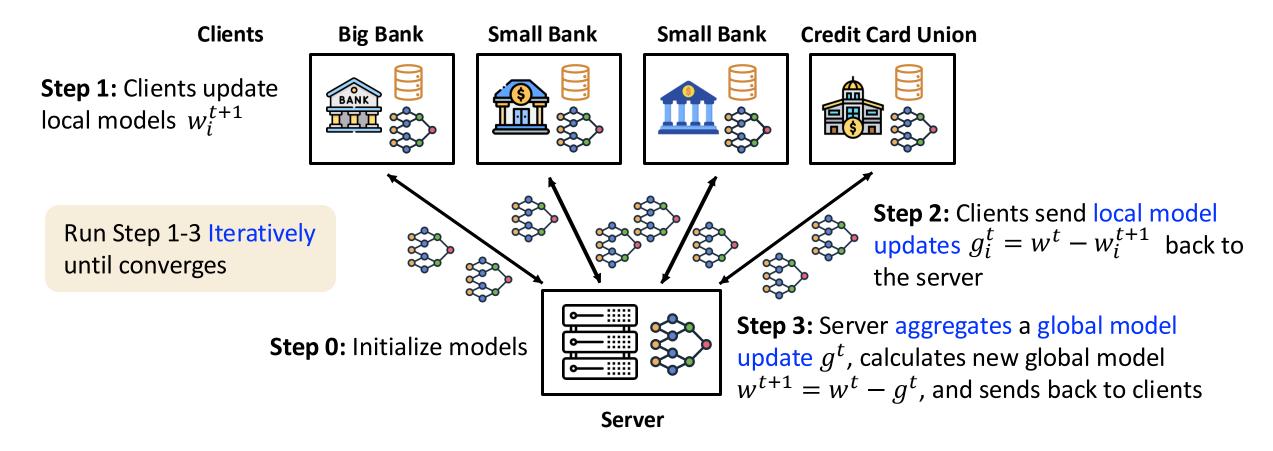
¹ University of Washington
 ² The Pennsylvania State University
 ³ University of Chicago

Outline

- Introduction: Federated Learning and Contribution Evaluation in FL
- Threat Model
- Design of a Model Poisoning <u>A</u>ttack to <u>C</u>ontribution <u>E</u>valuation, ACE
- Evaluation of **ACE**
- Conclusion and Future Work

Introduction: Federated Learning

Federated Learning (FL) ^[1,2]**:** Collaboratively train a machine learning (ML) model without sharing local training data



Introduction: Contribution Evaluation in FL

Factors that affect FL success:

Data quality (e.g., size, distribution), and participation willingness of clients

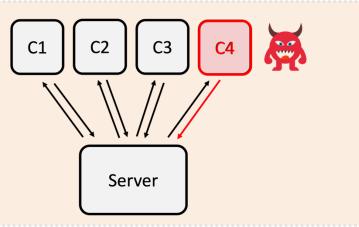
- Current methods [3-14] assume honest participants
- Contribution cannot be measured by data quality (server doesn't have raw data)
- This unique feature may be leveraged by malicious clients by sending carefully manipulated local model updates

Research Question: Can a malicious client processing low-quality data elevate its contribution evaluated by the server? And How?

Threat Model

Attacker's capabilities and knowledge:

- Has access to the local training dataset
- Has access to the global model
- Controls the training processes
- Manipulates its local model updates before sending them to the server (Model Poisoning)



Attacker's objective:

Elevate the attacker's contribution

```
Contribution Evaluation Method

\max_{g_i} E(g_i)
\sum_{j_i}
Local Model Update of Client i
```

Design Goals:

Current Contribution Evaluation Methods

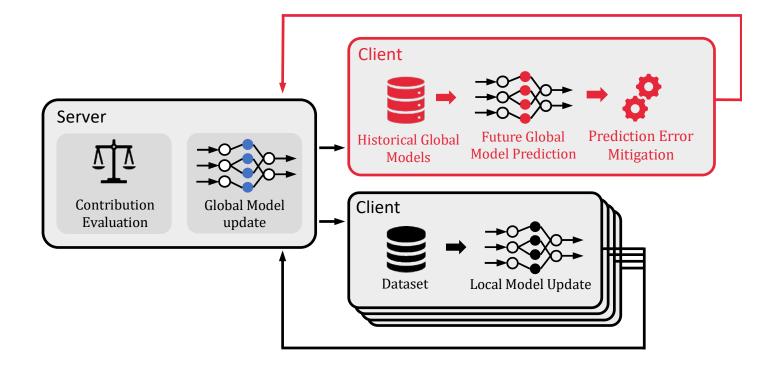
- 1. Individual Evaluation
 - Cosine similarity between local and global model updates ^[3-7]
 - Loss / Accuracy in a server validation dataset [8-9]



- 2. Joint Evaluation
 - Marginal loss (Leave-One-Out) [10-11]
 - Shapley Value (SV) [12-14]

Key Insight of ACE: Iterative nature of FL leaks information about other clients

→ Mimic global model updates using historical information of past global models



Step 1: Future Global Model Prediction

Using Cauchy Mean value theorem^[15] and L-BFGS Algorithm^[16] to estimate global model update \hat{g}^t :

$$\begin{split} \hat{g}^{t} &= g^{t-1} + H(t)(w^{t} - w^{t-1}) \\ &\approx g^{t-1} + \text{LBFGS}(w^{t} - w^{t-1}, \Delta W^{t}, \Delta G^{t}), \end{split}$$

Step 2: Prediction Error Mitigation

Threshold-based Filtering - Global model updates should have a similar scale

$$\hat{g}^t \approx g^{t-1} + \text{LBFGS}(\Delta W^t, \Delta G^t, w^t - w^{t-1}),$$

If the I-2 norm of the L-BFGS is less than a threshold:

$$\|LBFGS(\Delta W^t, \Delta G^t, v)\| \leq \tau$$

The prediction error is tolerable.

(Step 3) Strategies to enhance ACE based on different measurements

Evaluation of ACE: Setup

Datasets: MNIST, CIFAR10, and Tiny-ImageNet

Models: CNN and VGG11

Data Partition:

- Uniform Distribution (UNI)
- Power Law Distribution (POW)
- Class Imbalance (CLA)

Contribution Evaluation Methods:

Federated-SV (FedSV) ^[16], Leave-One-Out (LOO) ^[12], CFFL ^[11], GDR ^[8], and RFFL ^[7]

Joint Evaluation

Individual Evaluation

Attacker: Client with the lowest contribution

Baseline Attacks:

- Delta Weight Attack [17] $g_i^t = w^{t-1} w^t + \delta$
- Scaling Attack [18]
- Data Augmentation

Evaluation of ACE

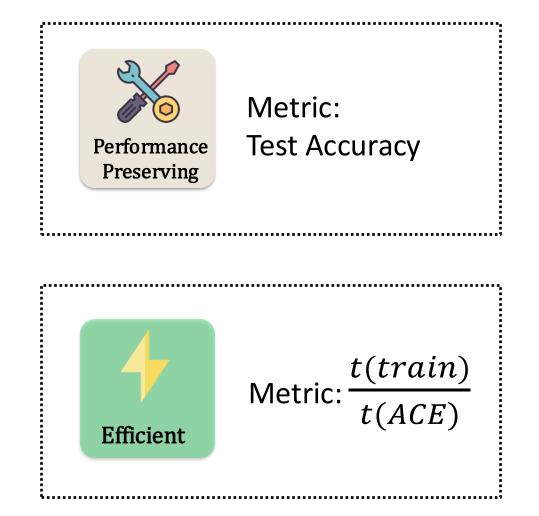
Evaluation Metrics

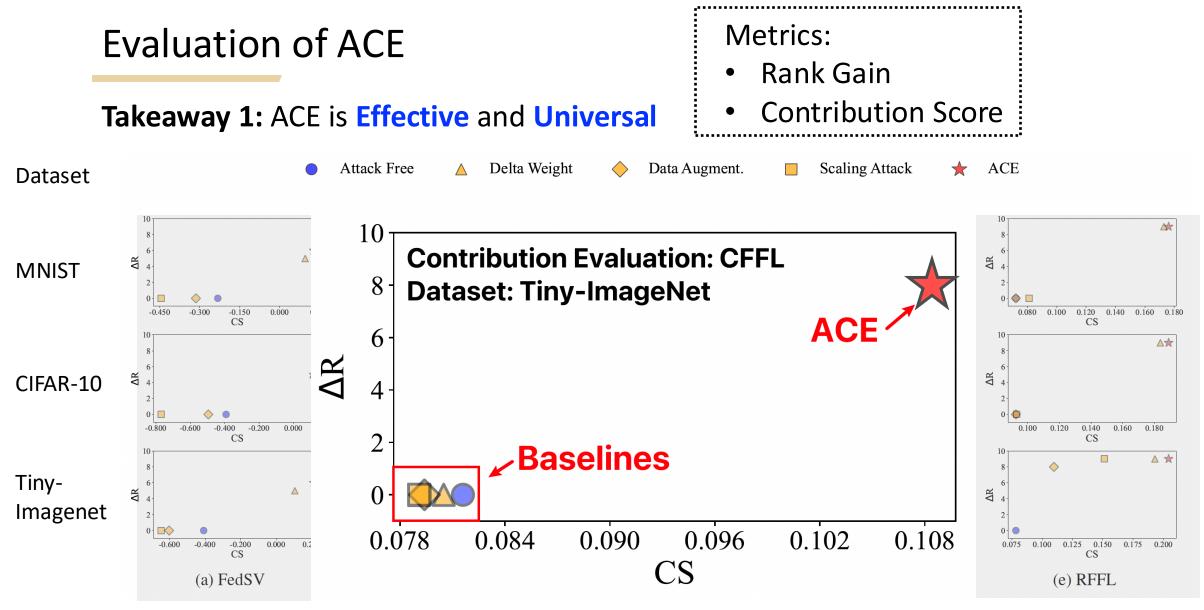
Metrics:

- Normalized Contribution Score Sum of contributions of for all rounds $CS_i = \frac{\sum_{t=1}^{T} e_i^t}{\sum_j \sum_{t=1}^{T} e_j^t}$
- Rank Gain

 $\Delta R_i = \widehat{R}_i - R_i$

Diverse contribution evaluation methods

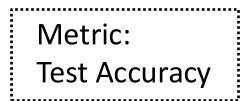




CLA (heterogeneous) Data Distribution

Evaluation of ACE

Takeaway 2: ACE preserves Utility



		Contribute Evaluation	Attack	UNI	MNIST POW	CLA	UNI	CIFAR-10 POW	CLA	UNI	Tiny-ImageNet POW	CLA
_			Attack Free	95.86%	95.69%	89.89%	71.16% 70.89%	70.82% 71.02%	56.32% 57.16%	46.37% 46.10%	47.84% 47.80%	44.98% 45.27%
No Attack	71.16%	,	70.82%	5	6.32%		71.63% 71.58% 71.30%	70.27% 71.01% 71.45%	56.05% 55.29% 57.60%	46.77% 46.59% 46.35%	48.37% 48.07% 48.23%	45.26% 45.01% 45.94%
	70.89% 71.63%		71.02% 70.27%		57.16% 56.05%		71.16% 70.89% 71.63% 71.58%	70.82% 71.02% 70.27% 71.01%	56.32% 57.16% 56.05% 55.29%	46.37% 46.10% 46.77% 46.59%	47.84% 47.80% 48.37% 48.07%	44.98% 45.27% 45.26% 45.01%
ACE	71.58% 71.30%		71.01% 71.45%		5.29% 7.60%		71.30% 71.84% 70.66% 73.08%	71.45% 60.65% 59.37% 60.93%	57.60% 49.99% 50.62% 50.62%	46.35% 51.77% 51.30% 51.92%	48.23% 48.23% 44.18% 47.83%	45.94% 39.96% 40.54% 40.04%
-			ACE	96.61%	95.35%	83.18%	71.55% 70.44%	60.41% 62.03%	49.91% 52.45%	52.22% 51.53%	44.23% 49.20%	39.87% 42.02%
		GDR	Attack Free Delta Weight Data Augment. Scaling Attack ACE	96.26% 96.84% 96.43% 96.26% 96.78%	96.23% 96.43% 96.18% 96.23% 96.53%	85.41% 89.02% 87.42% 85.42% 89.12%	70.97% 70.32% 72.01% 71.01% 70.27%	71.33% 70.76% 71.12% 71.36% 70.60%	56.66% 59.18% 57.38% 56.63% 59.23%	51.80% 52.19% 51.79% 51.84% 52.64%	51.96% 52.57% 52.04% 51.89% 52.77%	44.78% 46.01% 44.84% 44.78% 46.61%
33rd IISENIX		RFFL	Attack Free Delta Weight Data Augment. Scaling Attack ACE	96.78% 96.66% 96.25% 95.96% 96.64%	96.85% 96.85% 96.08% 95.97% 96.87%	92.67% 91.83% 92.67% 91.73% 92.30%	71.78% 70.69% 71.84% 71.73% 70.72%	71.03% 71.07% 71.04% 71.07% 70.90%	57.66% 56.95% 57.60% 56.60% 57.36%	52.35% 51.89% 51.83% 50.84% 51.75%	52.43% 52.49% 52.50% 52.50% 52.31%	46.72% 46.84% 46.31% 46.17% 46.54%

Evaluation of ACE

Takeaway 3: ACE is Efficient

Metric: The ratio between the computation costs of using a local training dataset to learn a local model update and ACE.

Dataset	FedSV	LOO	CFFL	GDR	RFFL
MNIST	30.88×			16.15×	
CIFAR-10	270.81×	$270.81 \times$	$21.25 \times$	$86.48 \times$	$101.44 \times$
Tiny-ImageNet	35.35×	35.35×	13.26×	$29.22 \times$	24.79×

Evaluation: Countermeasures to ACE

ACE is stealthy against state-of-the-art defenses [19-23]

Conclusion and Future Work

- Current contribution evaluation methods in FL can be attacked by malicious clients
- We propose ACE, a model poisoning attack to contribution evaluation in FL, which successfully elevates malicious clients' contributions
- ACE is effective, preserves utility, efficient, and universal
- Current countermeasures fail to defend against ACE
- New mitigation strategies need to be developed

Acknowledgements

This is a collaborative work!

Co-authors:

Fengqing Jiang (UW)

Prof. Luyao Niu (UW)

Prof. Jinyuan Jia (PSU)

Prof. Bo Li (UChicago)

Prof. Radha Poovendran (UW)

Acknowledgements

This work is supported by:

References

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communicationefficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.

[2] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated Learning: Strategies for Improving Communication Efficiency. arXiv preprint arXiv:1610.05492, 2016.
[3] Meirui Jiang, Holger R Roth, Wenqi Li, Dong Yang, Can Zhao, Vishwesh Nath, Daguang Xu, Qi Dou, and Ziyue Xu.
Fair federated medical image segmentation via client contribution estimation. In CVPR, pages 16302–16311, 2023.
[4] Zhuan Shi, Lan Zhang, Zhenyu Yao, Lingjuan Lyu, Cen Chen, Li Wang, Junhao Wang, and Xiang-Yang Li. Fedfaim: A model performance-based fair incentive mechanism for federated learning. IEEE Trans. Big Data, 2022.
[5] Xinyi Xu and Lingjuan Lyu. A reputation mechanism is all you need: Collaborative fairness and adversarial

robustness in federated learning. arXiv preprint arXiv:2011.10464, 2020.

[6] Xinyi Xu, Lingjuan Lyu, Xingjun Ma, Chenglin Miao, Chuan Sheng Foo, and Bryan Kian Hsiang Low. Gradient driven rewards to guarantee fairness in collaborative machine learning. NeurIPS, 34:16104–16117, 2021.

[7] Jingwen Zhang, Yuezhou Wu, and Rong Pan. Incentive mechanism for horizontal federated learning based on reputation and reverse auction. In WWW, pages 947–956, 2021.

[8] Yiqiang Chen, Xiaodong Yang, Xin Qin, Han Yu, Piu Chan, and Zhiqi Shen. Dealing with label quality disparity in federated learning. Federated Learning: Privacy and Incentive, pages 108–121, 2020.

References

[9] Lingjuan Lyu, Xinyi Xu, Qian Wang, and Han Yu. Collaborative fairness in federated learning. Federated Learning: Privacy and Incentive, pages 189–204, 2020.

[10] Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou. Measure contribution of participants in federated learning. In IEEE BigData, pages 2597–2604. IEEE, 2019.

[11] Zhebin Zhang, Dajie Dong, Yuhang Ma, Yilong Ying, Dawei Jiang, Ke Chen, Lidan Shou, and Gang Chen. Refiner:
 A reliable incentive-driven federated learning system powered by blockchain. VLDB Endowment, 14(12):2659–2662, 2021.

[12] Amirata Ghorbani and James Zou. Data Shapley: Equitable valuation of data for machine learning. In ICML, pages 2242–2251. PMLR, 2019.

[13] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the shapley value. In AISTATS, pages 1167– 1176. PMLR, 2019.

[14] Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. A principled approach to data valuation for federated learning. Federated Learning: Privacy and Incentive, pages 153–167, 2020.

[15] Serge Lang. Real and functional analysis, volume 142. Springer Science & Business Media, 2012.

[16] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. Representations of quasi-newton matrices and their use in limited memory methods. Mathematical Programming, 63(1-3):129–156, 1994

References

[17] Jierui Lin, Min Du, and Jian Liu. Free-riders in federated learning: Attacks and defenses. arXiv preprint arXiv:1911.12560, 2019.

[18] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to backdoor federated learning. In AISTATS, pages 2938–2948. PMLR, 2020.

[19] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adversaries: Byzantine tolerant gradient descent. NeurIPS, 30, 2017.

[20] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed learning: Towards optimal statistical rates. In ICML, pages 5650–5659. PMLR, 2018.

[21] Qi Xia, Zeyi Tao, Zijiang Hao, and Qun Li. FABA: an algorithm for fast aggregation against byzantine attacks in distributed neural networks. In IJCAI, 2019.

[22] Di Cao, Shan Chang, Zhijian Lin, Guohua Liu, and Donghong Sun. Understanding distributed poisoning attack in federated learning. In ICPADS, pages 233–239. IEEE, 2019.

[23] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating Sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866, 2018.

Thank You

zxu9@uw.edu

