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Introduction: Federated Learning

Federated Learning (FL) [%2): Collaboratively train a machine learning (ML) model
without sharing local training data

Clients Big Bank Small Bank Small Bank Credit Card Union
Step 1: Clients update Po Q ay
local models wf** iiiii LI} 5 @

_ @ Step 2: Clients send local model
Run Step 1-3 Iteratively @ @D updates ggr — wt — t+1 back to
until converges % the serverl

Step 3: Server aggregates a global model
update g caIcuIates new global model
witl = wt — gt and sends back to clients

Step O: Initialize models

Server

33" USENIX
CECURITY SYMPOSIUM Usenix Security 2024 | ML VIII: Backdoors and Federated Learning | August 15th 2024




W NSL

Introduction: Contribution Evaluation in FL

Factors that affect FL success:
Data quality (e.g., size, distribution), and participation willingness of clients

m W &

Contribution Incentive
Evaluation Mechanisms Rewards

Contribution cannot be measured by data quality (server doesn’t have raw data)
This unique feature may be leveraged by malicious clients by sending carefully
manipulated local model updates

p e Current methods 314 agssume honest participants

Research Question: Can a malicious client processing low-quality data elevate its
@ contribution evaluated by the server? And How?
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Threat Model

Attacker’s capabilities and knowledge: [ : [C3 ][ C4] ﬁ
* Has access to the local training dataset

¢ ] [ ¢ ]
* Has access to the global model \\\\ ////
e Controls the training processes
* Manipulates its local model updates before sending <
them to the server (Model Poisoning) ST

Attacker’s objective: Design Goals:
Elevate the attacker’s contribution

Contribution Evaluation Method y/ \/
/ . @

max E (g;)
di

\ Effective Universal Performance Efficient

Preserving

Local Model Update of Client i
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Design of ACE

Current Contribution Evaluation Methods

1. Individual Evaluation
* Cosine similarity between local and global model updates [3-7]
e Loss /Accuracy in a server validation dataset (8]

gj

Cosine Validation Loss
Similarity gt Dataset Acc
gi ¥

2. Joint Evaluation
« Marginal loss (Leave-One-Out) [10-11]
 Shapley Value (SV) [12-14]
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Design of ACE

Key Insight of ACE: Iterative nature of FL leaks information about other clients

— Mimic global model updates using historical information of past global models

1 (Client B
- - 3
rServer R }:@:: Q

Future Global  Prediction Error

Historical&lobal
ﬁl ‘ H E@:: Models Model Prediction Mitigation

Contributionf GlobalModel rClient \\‘
Evaluation update —
\ K-
'
/
Dataset LocalModel@pdate
\, J
= /) /)
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Design of ACE

Step 1: Future Global Model Prediction

Using Cauchy Mean value theorem!®! and L-BFGS Algorithm!®! to estimate
global model update gt :

g'=9""+HOW —w)
~ gt~ +LBFGS(wt — wi™1, AWE AGYH),

AW?, AG? : Buffered historical information
Awt=wt —wt-1 Buffer AWE= [Awt™™ Awt—m+L L Aw

Agtz gt _gt—l AGtZ [Agt_m, Agt_m+1, ...,Agt_l]
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Design of ACE

Step 2: Prediction Error Mitigation

Threshold-based Filtering - Global model updates should have a similar scale
gt = g*~' +LBFGS(AW*, AG', w! — w' ™),
If the I-2 norm of the L-BFGS is less than a threshold:
ILBFGS(AW?!, AGE, v)|| <7

The prediction error is tolerable.

(Step 3) Strategies to enhance ACE based on different measurements
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Evaluation of ACE: Setup

Datasets: MINIST, CIFAR10, and Tiny-ImageNet
Models: CNN and VGG11

Data Partition: Attacker: Client with the lowest contribution
e Uniform Distribution (UNI)

 Power Law Distribution (POW)
* Class Imbalance (CLA)

Contribution Evaluation Methods:
Federated-SV (FedSV) 18] Leave-One-Out (LOO) 21, CFFL'] GDR 8, and RFFL]

. Y . Y
Joint Evaluation Individual Evaluation

Baseline Attacks:

* Delta Weight Attack 1! gf =wtl—wt+6
« Scaling Attack 118!

* Data Augmentation
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Evaluation of ACE

Evaluation Metrics

©)

Effective

==

Universal

Metrics:

* Normalized Contribution

Score Sum of contributions of
/  forall rounds

e Rank Gain
ARi :]/é;' —Ri

Diverse contribution
evaluation methods

W NSL

Metric:

Performance  Test Accuracy
Preserving
~ t(train)
Metric:
t(ACE)
Efficient
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Evaluation of ACE . Metrics:
: e Rank Gain

Takeaway 1: ACE is Effective and Universal .+ Contribution Score

Dataset ® Attack Free A Delta Weight <> Data Augment. [J Scaling Attack % ACE
) . 1() L ] L] Ll 8 ﬁ:r
MNIST 5 » Contribution Evaluation: CFFL =
. 81 Dataset: Tiny-ImageNet * e
. cs 6 ACE / . cs -
=4 2 1 M =4 i
CIFAR-10 = : <] 4 =
o{@d O3 ) o @
10 il 2 ] ° n CS
: ~Baselines ey
Tiny- ‘ mo i
Q<¢1 4 a O 7 pé 4
Imagenet ) . . | : : . )
: E‘)?)OO 70200 fgéoo 0.000  0: 0.078 0,084 0,090 0.096 0,102 0,108 (t)).o('?s 0.100  0.125 Cg.lso 0.075 0200
(a) FedSV CS (e) RFFL
CLA (heterogeneous) Data Distribution
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Metric:
Test Accuracy

Evaluation of ACE

Takeaway 2: ACE preserves Utility

Contribute Ak MNIST CIFAR-10 Tiny-ImageNet
Evaluation UNI POW CLA UNI POW CLA UNI POW CLA
| Attack Free | 95.86% 95.69% 89.89% 71.16% 70.82% 56.32% 46.37% 47.84% 44.98%
70.89% 71.02% 57.16% 46.10% 47.80% 45.27%
N 0 \ 71.63% 70.27% 56.05% 46.77% 48.37% 45.26%
71.58% 71.01% 55.29% 46.59% 48.07% 45.01%
7 1 . 16% 70-82% 56.32% > 71.30% 71.45% 57.60% 46.35% 48.23% 45.94%

AttaCk 70.89% 71.02% 57.16% 71.16% 70.82% 56.32% 46.37% 47.84% 44.98%

) 70.89% 71.02% 57.16% 46.10% 47.80% 45.27%
? .63% : 56.05% 17% i3 5.26%
71.63%  7027%  5605% [Wl|ns pox o] (NS
? 71.30% 71.45% 57.60% 46.35% 48.23% 45.94%
71.58% 71.01% 53.29%

71.84% 60.65% 49.99% 51.77% 48.23% 39.96%

AC E 7 1 30% 7 1 4 5 % 5 7 60% : 70.66% 59.37% 50.62% 51.30% 44.18% 40.54%
. . . 5 73.08% 60.93% 50.62% 51.92% 47.83% 40.04%
4 71.55% 60.41% 49.91% 52.22% 44.23% 39.87%

| ACE | 96.61% 95.35% 83} 18% 70.44% 62.03% 52.45% 51.53% 49.20% 42.02%

Attack Free 96.26% 96.23% 85.41% 70.97% 71.33% 56.66% 51.80% 51.96% 44.78%

Delta Weight 96.84% 96.43% 89.02% 70.32% 70.76% 59.18% 52.19% 52.57% 46.01%

GDR Data Augment. 96.43% 96.18% 87.42% 72.01% 71.12% 57.38% 51.79% 52.04% 44.84%

Scaling Attack 96.26% 96.23% 85.42% 71.01% 71.36% 56.63% 51.84% 51.89% 44.78%

ACE 96.78% 96.53% 89.12% 70.27% 70.60% 59.23% 52.64% 52.77% 46.61%

Attack Free 96.78% 96.85% 92.67% 71.78% 71.03% 57.66% 52.35% 52.43% 46.72%

Delta Weight 96.66% 96.85% 91.83% 70.69% 71.07% 56.95% 51.89% 52.49% 46.84%

REFL Data Augment. 96.25% 96.08% 92.67% 71.84% 71.04% 57.60% 51.83% 52.50% 46.31%

Scaling Attack 95.96% 95.97% 91.73% 71.73% 71.07% 56.60% 50.84% 52.50% 46.17%

ACE 96.64% 96.87% 92.30% 70.72% 70.90% 57.36% 51.75% 52.31% 46.54%
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Evaluation of ACE

Takeaway 3: ACE is Efficient

Metric: The ratio between the computation costs of using a local training dataset
to learn a local model update and ACE.

Dataset FedSV L.LOO CFFL GDR RFFL

MNIST 30.88x  30.88x  7.48x 16.15x 18.26
CIFAR-10 2106k = 2081 ¢ 21755 8648 101 44
Tiny-ImageNet | 35.35x% Dy« 36 2909 % [ I 70 ¢
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Evaluation: Countermeasures to ACE
QL
8

ACE is stealthy against state-of-the-art defenses [1°-23]
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Conclusion and Future Work

* Current contribution evaluation methods in FL can be attacked by
malicious clients

 We propose ACE, a model poisoning attack to contribution
evaluation in FL, which successfully elevates malicious clients’
contributions

 ACE is effective, preserves utility, efficient, and universal

 Current countermeasures fail to defend against ACE

* New mitigation strategies need to be developed
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