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Introduction: Federated Learning

Federated Learning (FL) [1,2]: Collaboratively train a machine learning (ML) model 
without sharing local training data

Step 0: Initialize models

Step 1: Clients update 
local models

Step 2: Clients send local model 
updates                                  back to 
the server

Step 3: Server aggregates a global model 
update 𝑔𝑡, calculates new global model 
𝑤𝑡+1 = 𝑤𝑡 − 𝑔𝑡, and sends back to clients

Server

Big Bank Small Bank Small Bank Credit Card Union

𝑤𝑖
𝑡+1

𝑔𝑖
𝑡 = 𝑤𝑡 −𝑤𝑖

𝑡+1Run Step 1-3 Iteratively 
until converges

Clients
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Introduction: Contribution Evaluation in FL

Contribution 
Evaluation

Incentive 
Mechanisms Rewards

Research Question: Can a malicious client processing low-quality data elevate its 
contribution evaluated by the server? And How?

• Current methods [3-14] assume honest participants
• Contribution cannot be measured by data quality (server doesn’t have raw data)
• This unique feature may be leveraged by malicious clients by sending carefully 

manipulated local model updates

Factors that affect FL success: 
Data quality (e.g., size, distribution), and participation willingness of clients



Usenix Security 2024 | ML VIII: Backdoors and Federated Learning | August 15th 2024 5

Threat Model

Attacker’s capabilities and knowledge:
• Has access to the local training dataset
• Has access to the global model
• Controls the training processes
• Manipulates its local model updates before sending 

them to the server (Model Poisoning)

Local Model Update of Client 𝑖

Contribution Evaluation Method

max
𝑔𝑖

𝐸(𝑔𝑖)

Attacker’s objective:
Elevate the attacker’s contribution

Design Goals:
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Design of ACE

Current Contribution Evaluation Methods

1.   Individual Evaluation
• Cosine similarity between local and global model updates [3-7]

• Loss / Accuracy in a server validation dataset [8-9]

Cosine 
Similarity 

Validation 
Dataset𝒈𝒕

𝒈𝒊
𝒕

Loss
Acc

𝒈𝒋
𝒕

2.   Joint Evaluation
• Marginal loss (Leave-One-Out) [10-11]

• Shapley Value (SV) [12-14]
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Design of ACE

Key Insight of ACE: Iterative nature of FL leaks information about other clients

Global	Model
update

Local	Model	UpdateDataset

Client �

Historical	Global	
Models

Client �

Contribution	
Evaluation

Server
           a  

                
                 

     a    

→ Mimic global model updates using historical information of past global models   
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Design of ACE

Step 1: Future Global Model Prediction

∆𝑾𝒕, ∆𝑮𝒕 : Buffered historical information

∆𝑤𝑡= 𝑤𝑡 −𝑤𝑡−1

∆𝑔𝑡= 𝑔𝑡 −𝑔𝑡−1

Buffer ∆W𝑡= [∆𝑤𝑡−𝑚, ∆𝑤𝑡−𝑚+1, … , ∆𝑤𝑡−1]

∆𝐺𝑡= [∆𝑔𝑡−𝑚, ∆𝑔𝑡−𝑚+1, … , ∆𝑔𝑡−1]

Using Cauchy Mean value theorem[15] and L-BFGS Algorithm[16] to estimate 
global model update ො𝑔𝑡  : 

ො𝑔𝑡 = 𝑔𝑡−1 + 𝐻 𝑡 𝑤𝑡 − 𝑤𝑡−1

                    ≈ 𝑔𝑡−1 +LB  S(𝑤𝑡 − 𝑤𝑡−1, ∆𝑾𝒕, ∆𝑮𝒕),
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Design of ACE

Step 2: Prediction Error Mitigation

Threshold-based Filtering - Global model updates should have a similar scale

   If the l-2 norm of the L-BFGS is less than a threshold:

LB  S ∆W𝑡 , ∆𝐺𝑡 , 𝑣  ≤ 𝜏

The prediction error is tolerable.

ො𝑔𝑡 ≈ 𝑔𝑡−1 +LB  S(∆𝑾𝒕, ∆𝑮𝒕, 𝑤𝑡 − 𝑤𝑡−1),

(Step 3) Strategies to enhance ACE based on different measurements
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Evaluation of ACE: Setup

Datasets: MNIST, CIFAR10, and Tiny-ImageNet
Models: CNN and VGG11
Data Partition: 
• Uniform Distribution (UNI)
• Power Law Distribution (POW)
• Class Imbalance (CLA)

Contribution Evaluation Methods: 
Federated-SV (FedSV) [16],  Leave-One-Out (LOO) [12], CFFL [11], GDR [8], and RFFL [7]

Baseline Attacks:
• Delta Weight Attack [17] 
• Scaling Attack [18] 
• Data Augmentation

𝑔𝑖
𝑡 = 𝑤𝑡−1 − 𝑤𝑡 + 𝛿

Joint Evaluation Individual Evaluation

Attacker: Client with the lowest contribution
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Evaluation of ACE

Evaluation Metrics

Effective

Efficient

Performance 
Preserving

Universal

Metrics:
• Normalized Contribution 

Score
Metric: 
Test Accuracy

Metric: 
𝑡(𝑡𝑟𝑎𝑖𝑛)

𝑡(𝐴𝐶𝐸)
Diverse contribution 
evaluation methods

Sum of contributions of 
for all rounds

• Rank Gain
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Evaluation of ACE

Takeaway 1: ACE is Effective and Universal

CLA (heterogeneous) Data Distribution

Dataset

MNIST

CIFAR-10

Tiny-
Imagenet

Metrics:
• Rank Gain
• Contribution Score
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Evaluation of ACE

Takeaway 2: ACE preserves Utility

ACE

No 
Attack

Metric: 
Test Accuracy
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Evaluation of ACE

Takeaway 3: ACE is Efficient

Metric: The ratio between the computation costs of using a local training dataset 
to learn a local model update and ACE. 
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Evaluation: Countermeasures to ACE

ACE is stealthy against state-of-the-art defenses [19-23] 
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Conclusion and Future Work

• Current contribution evaluation methods in FL can be attacked by 
malicious clients

• We propose ACE, a model poisoning attack to contribution 
evaluation in FL, which successfully elevates malicious clients’ 
contributions 

• ACE is effective, preserves utility, efficient, and universal
• Current countermeasures fail to defend against ACE

• New mitigation strategies need to be developed
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