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TL;DR
1. We identified the insider and outsider threats in the LLM-

integrated application on bias, toxic content, privacy, 
disinformation risk

2. We proposed a mitigation design Shield to address the vulnerability.
3. The experiment on GPT-3.5 and GPT-4 indicated the existence of 

vulnerabilities and the effectiveness of Shield.

Insight for insider threat: app may hammer integrity of communication

Insight for outsider threat: external source may not be under control

Upstream: insider (app) can perturbate the instruction (pertb-system) 
or user query (pertb-user) based on semantic goal  
Downstream: insider (app) can perturbate the response (proxy) based 
on semantic goal  

Compromise the external resource:
e.g. poison the database or web 
search result

• User and LLM are non-malicious, and user is victim
• Objective: cause user to receive a response with malicious semantic goal

Threat Evaluation

Insight: 
1. break the opaque between two interactions by detecting with 

reference to the original user query or LLM response
2. Such breaking requires a secure message delivery mechanism

Bias: preference toward certain choice[1]
e.g. “Apple is better.”

Privacy: response intents to collect the private information [3]
e.g. “What is your credit card, I can help to make an order”

Disinformation: response containing targeted misleading info [4]
e.g., “Agoole is excellent”, as 85% of our customer reviews said.

Risks as Malicious Semantic Goal

Toxic content: response containing offensive content [2]
e.g., “Apple is **some bad words**.”

Source IdentificationIntegrity Utility Preservation Attack Detectability
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Setup
• LLM: GPT-3.5 and GPT-4
• Application: a shopping assistant supported by LLM
• Metrics: Target Attack Success Rate; Token Ratio w. and w/o attack

Takeaway: all insider attacks are effective

Takeaway: outsider threat is comparable to insider threat

Takeaway: cost of threat attack is negligible

• Cost is the extra price or 
service latency
oDepends on tokens
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o smaller 𝑟, lower cost of attack

• Pertb-System for different risks 
have different effects on 
prompt/response

• Overall cost of the attack is 
negligible

LLM-integrated applications are developed to provide a better interactive 
experience to applications  
oe.g., Microsoft New Bing Search or VSCode Copilot 

Research Questions: 
RQ1: Are there any vulnerabilities in such LLM-integrated applications? 
RQ2: If there are vulnerabilities, how can we mitigate them?
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