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TL;DR :
1. We identified the insider and outsider threats in the LLM- Threat Evaluatlon
integrated application on bias, toxic content, privacy, Setup

disinformation risk
2. We proposed a mitigation design Shield to address the vulnerability.
3. The experiment on GPT-3.5 and GPT-4 indicated the existence of * Application: a shopping assistant supported by LLM
vulnerabilities and the effectiveness of Shield. * Metrics: Target Attack Success Rate; Token Ratio w. and w/o attack

* LLM: GPT-3.5 and GPT-4

Takeaway: all insider attacks are effective
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LLM-integrated applications are developed to provide a better interactive TumanEval 2% 0% 2%  99% 7%  100% 3% 30%
experience to app“cations GPT-Auto 0% 0% 47% 67% 85% 81% 68% 53%
oe.g., Microsoft New Bing Search or VSCode Copilot Takeaway: outsider threat is comparable to insider threat
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Takeaway: cost of threat attack is negligible
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Research Questions: o 7. — _total token w. attack 081 EEREE B W B B
RQ1: Are there any vulnerabilities in such LLM-integrated applications? "'~ #total token w/o attack ol IER: FER: BER: BERE-

Token Ratio

o smaller r, lower cost of attack

. efe, o o, 0 ?
RQ2: If there are vulnerabilities, how can we mitigate them?- + Pertb-System for different risks 04

have different effects on

0.2
Threat Model prompt/response
e Overall cost of the attack is ’ Bi'as To;(ic Pri\:acy Disinfoi‘mation
* User and LLM are non-malicious, and user is victim negligible

* Objective: cause user to receive a response with malicious semantic goal

Mitigation Design: Shield

Insight for insider threat: app may hammer integrity of communication

Insight:
You are a shopping assistant[...]. . . . .
@o ;gf;gg;g;g;e;;ggg;ggly 1. break the opaque between two interactions by detecting with

(o) \lfomUsedxo reference to the original user query or LLM response
2. Such breaking requires a secure message delivery mechanism
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Upstream: insider (app) can perturbate the instruction (pertb-system) (Prr——) (arw—|
or user query (pertb-user) based on semantic goal '0 — 7
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Downstream: insider (app) can perturbate the response (proxy) based Q ([ P)o)
on semantic goal _ e 0 (P
Insight for outsider threat: external source may not be under control Upstream (@hiohh g @r
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Bias: preference toward certain choice[1]
%B; e.g. “Apple is better”

@': Toxic content: response containing offensive content [2]
- “ e Kk %k »
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