Exact Fault Tolerance Consensus with Voting Validity

Zhangchen Xu¹, Yuetai Li², Chenglin Feng² and Lei Zhang²

¹ Department of Electrical and Computer Engineering, University of Washington ² James Watt School of Engineering, University of Glasgow

IPDPS 2023

Outline

- Background: Distributed Consensus
- Motivation
- Existing Solutions
- Main Theoretical Results
- Consensus Protocol Design and Refinement
- Conclusion and Future Work

Background

Distributed Consensus

 Reaching an agreement among a group of nodes, despite the existence of faulty (i.e., crash or Byzantine) nodes.

Crash Fault: stops working without resuming

Byzantine Fault: act arbitrarily

Background

Distributed Consensus

- [Classic Binary Consensus Definition] A distributed consensus algorithm must satisfy:
 - Termination: Every non-faulty node can decide a single output value in finite time
 - Agreement: The output value of non-faulty nodes are identical
 - Validity: If all non-faulty nodes begin with the same input value, they output
 that value
 - → Can non-faulty nodes **begin with different input values** according to what they prefer, like a democratic election?

Motivation

Differences of "voting" in distributed consensus and social choice

- Voting in Distributed Consensus: A mechanism that produces agreement among different nodes. Reach agreements > what agreements be made
- Voting in Social Choice: Preference aggregation. Participants have specific preferences for one option.

Can we ensure not only **agreement** but also realize **preference aggregation** in consensus process?

Potential applications

- Multi-agent coordination
- Majority voting in distributed systems
- Leader election in blockchain

Existing Solutions

Binary Consensus

Multi-valued Consensus

Variety of Validity Definitions

Perference Aggregation and Exactness

Validity Definitions

Validity: If all non-faulty nodes begin with the same input value, they output that value.

Binary inputs to multi-valued inputs.

Strong Validity: The output value of each non-faulty node must be the input value of some non-faulty nodes.

Add more practical meaning.

Median Validity, Interval Validity, Approximate Average ...

Map validity to perference aggregation.

Discrete Inputs --> Require exactness of the outputs.

[This Paper] Voting Validity: The output value of non-faulty nodes must be the **exact plurality** of the inputs of non-faulty nodes.

> Achieve Termination, Agreement and Voting Validity

Main Results

Options A, B, C, maximum fault tolerance t, total number of nodes N $A_G > B_G > C_G$: number of non-faulty nodes support A, B, C

With Prior voting knowledge:

• Impossibility of distributed consensus with voting validity if

$$N \leq max\{3t, 2t + 2B_G + C_G\}$$

• **Possibility** of distributed consensus with voting validity if

 $N > max\{3t, 2t + 2B_G + C_G\}$

Main Results

Options A, B, C, maximum fault tolerance t, total number of nodes N $A_G > B_G > C_G$: number of **non-faulty nodes** support A, B, C

Without Prior voting knowledge:

- Impossibility of distributed consensus with voting validity without prior voting knowledge.
- Possibility of distributed consensus with voting validity without prior voting knowledge if termination property is relaxed.
 - Introduce Safety-critical Tolerance (SCT) and Safety-Guaranteed Protocol:

Termination Condition: $N > 3t + 2B_G + C_G$

Our Safety-Guaranteed BFT Protocol

Protocol Design and Refinement

Highlights of Protocol Design:

- We proposed one-shot CFT, BFT and SCT consensus protocols with the proposed voting validity
- We proved the correctness of proposed protocols

Two Protocol Refinements:

- Incremental Threshold Protocol to realize **optimistic responsiveness**.
- Distributed consensus in wireless broadcast networks. The BFT distributed consensus protocol with voting validity can achieve if

$$N > 2t + 2B_G + C_G$$

Conclusion and Future Work

- We proposed voting validity, a crossover between distributed consensus and social choice.
- We provide a comprehensive fault-tolerance analysis and give several **impossibility results**.
- We proposed CFT, BFT and SCT distributed consensus protocols and proved their correctness.

Future work:

- Different validity definitions and their application perspective
- Extending the voting validity to multi-dimensional agreement
- Developing State-Machine-Replication protocols for voting validity

Thank you

zxu9@uw.edu

